Biholomorphic inequivalence of the euclidean ball and the poly-disc

Gadadhar Misra together with Deepak Pradhan

May 28, 2022

Indian Statistical Institute Bangalore And Indian Institute of Technology Gandhinagar

Again, what we did not finish yesterday

the final act - curvature inequality for contractions

the Bergman kernel

transformation rule for the kernel

the euclidean ball and the polydisc are not biholomorphic

new quasi-invariant kernels from old ones

Again, what we did not finish yesterday

If γ is holomorphic and admits the power series expansion $\gamma(w) = \zeta_0 + \zeta_1 w + \zeta_2 w^2 + \cdots$, then the norm $\|\gamma(w)\|^2$ is a function of w and \bar{w} . It has the form $\sum_{j,k=0}^{\infty} \langle \zeta_j, \zeta_k \rangle w^j \bar{w}^k, \zeta_0, \zeta_2, \dots \in \mathscr{H}.$

Polarizing $\|\gamma(w)\|^2$, we obtain a new function $\tilde{\gamma}(z,w) := \langle \gamma(z), \gamma(w) \rangle$.

Thus $((\tilde{\gamma}(z_i, z_j)))$ is non negative definite for all choices of $z_1, \dots z_n$ in D. This is just the positive-definiteness of the kernel function $K(z, w) = \langle \gamma(z), \gamma(w) \rangle!$

The curvature \mathscr{K} is a real analytic function and we have shown that $-\mathscr{K}$ is positive.

Let $\widetilde{\mathscr{K}}(z,w) := -\frac{\partial^2}{\partial \widetilde{w} \partial z} \log \widetilde{\gamma}(z,w)$ denote the function obtained from polarization of the curvature \mathscr{K} . What about positive definiteness of $-\widetilde{\mathscr{K}}$?

If γ is holomorphic and admits the power series expansion $\gamma(w) = \zeta_0 + \zeta_1 w + \zeta_2 w^2 + \cdots$, then the norm $\|\gamma(w)\|^2$ is a function of w and \bar{w} . It has the form $\sum_{j,k=0}^{\infty} \langle \zeta_j, \zeta_k \rangle w^j \bar{w}^k, \zeta_0, \zeta_2, \ldots \in \mathscr{H}.$

Polarizing $\|\gamma(w)\|^2$, we obtain a new function $\tilde{\gamma}(z,w) := \langle \gamma(z), \gamma(w) \rangle$.

Thus $((\tilde{\gamma}(z_i, z_j)))$ is non negative definite for all choices of $z_1, \ldots z_n$ in D. This is just the positive-definiteness of the kernel function $K(z, w) = \langle \gamma(z), \gamma(w) \rangle!$

The curvature \mathscr{K} is a real analytic function and we have shown that $-\mathscr{K}$ is positive.

Let $\widetilde{\mathscr{K}}(z,w) := -\frac{\partial^2}{\partial w \partial z} \log \widetilde{\gamma}(z,w)$ denote the function obtained from polarization of the curvature \mathscr{K} .

If γ is holomorphic and admits the power series expansion $\gamma(w) = \zeta_0 + \zeta_1 w + \zeta_2 w^2 + \cdots$, then the norm $\|\gamma(w)\|^2$ is a function of w and \bar{w} . It has the form $\sum_{j,k=0}^{\infty} \langle \zeta_j, \zeta_k \rangle w^j \bar{w}^k, \zeta_0, \zeta_2, \ldots \in \mathscr{H}.$

Polarizing $\|\gamma(w)\|^2$, we obtain a new function $\tilde{\gamma}(z,w) := \langle \gamma(z), \gamma(w) \rangle$.

Thus $((\tilde{\gamma}(z_i, z_j)))$ is non negative definite for all choices of $z_1, \ldots z_n$ in D. This is just the positive-definiteness of the kernel function $K(z, w) = \langle \gamma(z), \gamma(w) \rangle!$

The curvature $\mathscr H$ is a real analytic function and we have shown that $-\mathscr H$ is positive.

Let $\widetilde{\mathscr{K}}(z,w) := -\frac{\partial^2}{\partial \widetilde{w} \partial z} \log \widetilde{\gamma}(z,w)$ denote the function obtained from polarization of the curvature \mathscr{K} . What about positive definiteness of $-\widetilde{\mathscr{K}}$?

If γ is holomorphic and admits the power series expansion $\gamma(w) = \zeta_0 + \zeta_1 w + \zeta_2 w^2 + \cdots$, then the norm $\|\gamma(w)\|^2$ is a function of w and \bar{w} . It has the form $\sum_{j,k=0}^{\infty} \langle \zeta_j, \zeta_k \rangle w^j \bar{w}^k, \zeta_0, \zeta_2, \ldots \in \mathscr{H}.$

Polarizing $\|\gamma(w)\|^2$, we obtain a new function $\tilde{\gamma}(z,w) := \langle \gamma(z), \gamma(w) \rangle$.

Thus $((\tilde{\gamma}(z_i, z_j)))$ is non negative definite for all choices of $z_1, \ldots z_n$ in D. This is just the positive-definiteness of the kernel function $K(z, w) = \langle \gamma(z), \gamma(w) \rangle!$

The curvature $\mathscr H$ is a real analytic function and we have shown that $-\mathscr H$ is positive.

Let $\widetilde{\mathscr{K}}(z,w) := -\frac{\partial^2}{\partial \bar{w} \partial z} \log \tilde{\gamma}(z,w)$ denote the function obtained from polarization of the curvature \mathscr{K} .

What about positive definiteness of $-\pi$?

If γ is holomorphic and admits the power series expansion $\gamma(w) = \zeta_0 + \zeta_1 w + \zeta_2 w^2 + \cdots$, then the norm $\|\gamma(w)\|^2$ is a function of w and \bar{w} . It has the form $\sum_{j,k=0}^{\infty} \langle \zeta_j, \zeta_k \rangle w^j \bar{w}^k, \zeta_0, \zeta_2, \ldots \in \mathscr{H}.$

Polarizing $\|\gamma(w)\|^2$, we obtain a new function $\tilde{\gamma}(z,w) := \langle \gamma(z), \gamma(w) \rangle$.

Thus $((\tilde{\gamma}(z_i, z_j)))$ is non negative definite for all choices of $z_1, \ldots z_n$ in D. This is just the positive-definiteness of the kernel function $K(z, w) = \langle \gamma(z), \gamma(w) \rangle!$

The curvature $\mathscr H$ is a real analytic function and we have shown that $-\mathscr H$ is positive.

Let $\widetilde{\mathscr{K}}(z,w) := -\frac{\partial^2}{\partial \overline{w} \partial z} \log \tilde{\gamma}(z,w)$ denote the function obtained from polarization of the curvature \mathscr{K} . What about positive definiteness of $-\widetilde{\mathscr{K}}$?

a secret

Refining the computation that established the positivity of \mathscr{K} , we obtain a stronger inequality. Set $\varphi(w) := K(\cdot, w) \otimes \bar{\partial}K(\cdot, w) - \bar{\partial}K(\cdot, w) \otimes K(\cdot, w).$ Note that $\varphi(w) \in \mathscr{H}$, $w \in \mathbb{D}$.

Moreover, a straightforward computation using the reproducing property of K shows that
$$\begin{split} \langle \varphi(z), \varphi(w) \rangle &= \|\frac{\partial}{\partial w} \gamma(w)\|^2 \|\gamma(w)\|^2 - |\langle \frac{\partial}{\partial w} \gamma(w), \gamma(w) \rangle|^2 \\ &= \|\varphi(w)\|^4 \frac{\partial^2}{\partial \bar{w} \partial w} \log \|\varphi(w)\|^{-2} \\ &= -\mathscr{G}_{K^{-2}}(w), \end{split}$$

where $\gamma(w) = K(\cdot, w)$, as before and $\mathscr{G}_{K^{-2}}$ is the Gaussian curvature of the metric $K(w, w)^{-2}$.

Thus the Gaussian curvature $\mathscr{G}_{K^{-2}}$ is a non-negative definite kernel.

a secret

Refining the computation that established the positivity of *K*, we obtain a stronger inequality. Set $\boldsymbol{\varphi}(w) := K(\cdot, w) \otimes \bar{\partial} K(\cdot, w) - \bar{\partial} K(\cdot, w) \otimes K(\cdot, w).$ Note that $\varphi(w) \in \mathcal{H}$, $w \in \mathbb{D}$. Moreover, a straightforward computation using the reproducing property of K shows that $\langle \boldsymbol{\varphi}(z), \boldsymbol{\varphi}(w) \rangle = \| \frac{\partial}{\partial w} \boldsymbol{\gamma}(w) \|^2 \| \boldsymbol{\gamma}(w) \|^2 - |\langle \frac{\partial}{\partial w} \boldsymbol{\gamma}(w), \boldsymbol{\gamma}(w) \rangle|^2$ $= \|\boldsymbol{\varphi}(w)\|^4 \frac{\partial^2}{\partial \bar{w} \partial w} \log \|\boldsymbol{\varphi}(w)\|^{-2}$ $= -\mathcal{G}_{K-2}(w),$

where $\gamma(w) = K(\cdot, w)$, as before and $\mathscr{G}_{K^{-2}}$ is the Gaussian curvature of the metric $K(w, w)^{-2}$.

Thus the Gaussian curvature $\mathscr{G}_{K^{-2}}$ is a non-negative definite kernel.

a secret

Refining the computation that established the positivity of \mathcal{K} , we obtain a stronger inequality. Set $\boldsymbol{\varphi}(w) := K(\cdot, w) \otimes \bar{\partial} K(\cdot, w) - \bar{\partial} K(\cdot, w) \otimes K(\cdot, w).$ Note that $\varphi(w) \in \mathcal{H}$, $w \in \mathbb{D}$. Moreover, a straightforward computation using the reproducing property of K shows that $\langle \varphi(z), \varphi(w) \rangle = \|\frac{\partial}{\partial w} \gamma(w)\|^2 \|\gamma(w)\|^2 - |\langle \frac{\partial}{\partial w} \gamma(w), \gamma(w) \rangle|^2$ $= \|\boldsymbol{\varphi}(w)\|^4 \frac{\partial^2}{\partial \bar{w} \partial w} \log \|\boldsymbol{\varphi}(w)\|^{-2}$ $= -\mathcal{G}_{K-2}(w),$

where $\gamma(w) = K(\cdot, w)$, as before and $\mathscr{G}_{K^{-2}}$ is the Gaussian curvature of the metric $K(w, w)^{-2}$.

Thus the Gaussian curvature $\mathscr{G}_{K^{-2}}$ is a non-negative definite kernel.

the final act - curvature inequality for contractions

Proposition

Let $T \in B_1(\mathbb{D})$ be a contraction. Assume that T is unitarily equivalent to the operator M^* on (\mathcal{H}, K) for some non-negative definite kernel K on the unit disc. Then the following inequality holds:

$$K^{2}(z,w) \preceq \mathbb{S}_{\mathbb{D}}^{-2}(z,w)\mathscr{G}_{K^{-1}}(z,w),$$

that is, the matrix

$$\left(\left(\mathbb{S}_{\mathbb{D}}^{-2}(w_i, w_j) \mathscr{G}_{K^{-1}}(w_i, w_j) - K^2(w_i, w_j) \right) \right)_{i,j=1}^n$$

is non-negative definite for every subset $\{w_1, \ldots, w_n\}$ of \mathbb{D} and $n \in \mathbb{N}$.

the Bergman kernel

For the Bergman space $\mathbb{A}^2(\mathbb{D}^m)$, of the polydisc \mathbb{D}^m , the orthonormal basis is $\{\sqrt{\prod_{k=1}^m (i_k+1)} z^I : I = (i_1, \ldots, i_m)\}$. Clearly, we have

$$B_{\mathbb{D}^m}(z,w) = \sum_{|I|=0}^{\infty} \left(\prod_{k=1}^m (i_k+1)\right) z^I \bar{w}^I = \prod_{i=1}^m (1-z_i \bar{w}_i)^{-2}.$$

Similarly, for the Bergman space of the ball $\mathbb{A}^2(\mathbb{B}^m)$, the orthonormal basis is $\{\sqrt{\binom{-m-1}{|I|}}z^I: I = (i_1, \ldots, i_m)\}$. Again, it follows that

$$B_{\mathbb{B}^m}(z,w) = \sum_{|I|=0}^{\infty} \binom{-m-1}{\ell} \left(\sum_{|I|=\ell} \binom{|I|}{I} z^I \bar{w}^I\right) = (1-\langle z,w\rangle)^{-m-1}.$$

For the Bergman space $\mathbb{A}^2(\mathbb{D}^m)$, of the polydisc \mathbb{D}^m , the orthonormal basis is $\{\sqrt{\prod_{k=1}^m (i_k+1)} z^I : I = (i_1, \ldots, i_m)\}$. Clearly, we have

$$B_{\mathbb{D}^m}(z,w) = \sum_{|I|=0}^{\infty} \left(\prod_{k=1}^m (i_k+1)\right) z^I \bar{w}^I = \prod_{i=1}^m (1-z_i \bar{w}_i)^{-2}.$$

Similarly, for the Bergman space of the ball $\mathbb{A}^2(\mathbb{B}^m)$, the orthonormal basis is $\{\sqrt{\binom{-m-1}{|I|}\binom{|I|}{I}}z^I: I=(i_1,\ldots,i_m)\}$. Again, it follows that

$$B_{\mathbb{B}^m}(z,w) = \sum_{|I|=0}^{\infty} \binom{-m-1}{\ell} \left(\sum_{|I|=\ell} \binom{|I|}{I} z^I \bar{w}^I \right) = (1 - \langle z, w \rangle)^{-m-1}.$$

Any bi-holomorphic map $\varphi : \mathscr{D} \to \tilde{\mathscr{D}}$ induces a unitary operator $U_{\varphi} : \mathbb{A}^2(\tilde{\mathscr{D}}) \to \mathbb{A}^2(\mathscr{D})$ defined by the formula $(U_{\varphi}f)(z) = J(\varphi, z) (f \circ \varphi)(z), f \in \mathbb{A}^2(\tilde{\mathscr{D}}), z \in \mathscr{D}.$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^n :

 $\int_{\widetilde{\mathscr{D}}} f \, dV = \int_{\mathscr{D}} (f \circ \varphi) \, |J_{\mathbb{C}} \varphi|^2 dV.$

Consequently, if $\{\tilde{e}_n\}_{n\geq 0}$ is any orthonormal basis for $\mathbb{A}^2(\hat{\mathscr{D}})$, then $\{e_n\}_{n\geq 0}$, where $\tilde{e}_n = J(\varphi, \cdot)(\tilde{e}_n \circ \varphi)$ is an orthonormal basis for the Bergman space $\mathbb{A}^2(\hat{\mathscr{D}})$.

Any bi-holomorphic map $\varphi : \mathscr{D} \to \tilde{\mathscr{D}}$ induces a unitary operator $U_{\varphi} : \mathbb{A}^{2}(\tilde{\mathscr{D}}) \to \mathbb{A}^{2}(\mathscr{D})$ defined by the formula $(U_{\varphi}f)(z) = J(\varphi, z) (f \circ \varphi)(z), f \in \mathbb{A}^{2}(\tilde{\mathscr{D}}), z \in \mathscr{D}.$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^n :

$$\int_{\widetilde{\mathscr{D}}} f \, dV = \int_{\mathscr{D}} (f \circ \varphi) \, |J_{\mathbb{C}} \varphi|^2 dV.$$

Consequently, if $\{\tilde{e}_n\}_{n\geq 0}$ is any orthonormal basis for $\mathbb{A}^2(\tilde{\mathscr{D}})$, then $\{e_n\}_{n\geq 0}$, where $\tilde{e}_n = J(\varphi, \cdot)(\tilde{e}_n \circ \varphi)$ is an orthonormal basis for the Bergman space $\mathbb{A}^2(\tilde{\mathscr{D}})$.

transformation rule for the kernel

quasi-invariance of B

Expressing the Bergman Kernel $B_{\mathscr{D}}$ of the domains \mathscr{D} as the infinite sum $\sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$ using the orthonormal basis in $\mathbb{A}^2(\mathscr{D})$, we see that the Bergman Kernel B is quasi-invariant, that is, if $\varphi : \mathscr{D} \to \widetilde{\mathscr{D}}$ is holomorphic then we have the transformation rule

 $J(\boldsymbol{\varphi}, z) B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(z), \boldsymbol{\varphi}(w)) \overline{J(\boldsymbol{\varphi}, w)} = B_{\mathscr{D}}(z, w),$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w.

If \mathscr{D} admits a transitive group of bi-holomorphic automorphisms, then this transformation rule gives an effective way of computing the Bergman Kernel. Thus $B_{\mathscr{D}}(z,z) = |J(\varphi_z,z)|^2 B_{\mathscr{D}}(0,0), z \in \mathscr{D},$

where φ_z is the automorphism of \mathscr{D} with the property $\varphi_z(z) = 0$.

quasi-invariance of B

Expressing the Bergman Kernel $B_{\mathscr{D}}$ of the domains \mathscr{D} as the infinite sum $\sum_{n=0}^{\infty} e_n(z)\overline{e_n(w)}$ using the orthonormal basis in $\mathbb{A}^2(\mathscr{D})$, we see that the Bergman Kernel B is quasi-invariant, that is, if $\varphi: \mathscr{D} \to \widetilde{\mathscr{D}}$ is holomorphic then we have the transformation rule

 $J(\boldsymbol{\varphi}, z) B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(z), \boldsymbol{\varphi}(w)) \overline{J(\boldsymbol{\varphi}, w)} = B_{\mathscr{D}}(z, w),$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w.

If \mathscr{D} admits a transitive group of bi-holomorphic automorphisms, then this transformation rule gives an effective way of computing the Bergman Kernel. Thus $B_{\mathscr{D}}(z,z) = |J(\varphi_z,z)|^2 B_{\mathscr{D}}(0,0), z \in \mathscr{D},$

where φ_z is the automorphism of \mathscr{D} with the property $\varphi_z(z) = 0$.

The quasi-invariance of the Bergman kernel $B_{\mathscr{D}}(z;w)$ also leads to a bi-holomorphic invariant for the domain \mathscr{D} . Setting

$$\mathscr{K}_{B_{\mathscr{D}}}(z) = \left(\frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log B_{\mathscr{D}}\right)(z)$$

to be the curvature of the metric $B_{\mathscr{D}}(z,z)$, the function

$$\mathbb{I}_{\mathscr{D}}(z) := \frac{\det \mathscr{K}_{B_{\mathscr{D}}}(z)}{B_{\mathscr{D}}(z,z)}, \, z \in \mathscr{D}$$

is a bi-holomorphic invariant for the domain \mathcal{D} .

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, $(U_{\varphi^{-1}}f)(z) := J(\varphi, z)(f \circ \varphi)(z)$ is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$.

The map $J: \operatorname{Aut}(\mathcal{D}) \times \mathcal{D} \to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\boldsymbol{\psi}\boldsymbol{\varphi},z)=J(\boldsymbol{\varphi},\boldsymbol{\psi}(z))J(\boldsymbol{\psi},z),\,\boldsymbol{\varphi},\boldsymbol{\psi}\in \operatorname{Aut}(\mathscr{D}),\,z\in\mathscr{D}.$

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.

Thus we have a unitary representation of the Lie group $\operatorname{Aut}(\mathcal{D})$ on $\mathbb{A}^2(\mathcal{D})$.

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, $(U_{\varphi^{-1}}f)(z) := J(\varphi, z)(f \circ \varphi)(z)$ is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$.

The map $J:\operatorname{Aut}(\mathscr{D})\times \mathscr{D}\to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\boldsymbol{\psi}\boldsymbol{\varphi},z)=J(\boldsymbol{\varphi},\boldsymbol{\psi}(z))J(\boldsymbol{\psi},z),\,\boldsymbol{\varphi},\boldsymbol{\psi}\in\operatorname{Aut}(\mathscr{D}),\,z\in\mathscr{D}.$

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.

Thus we have a unitary representation of the Lie group $\operatorname{Aut}(\mathcal{D})$ on $\mathbb{A}^2(\mathcal{D})$.

Consider the special case, where $\varphi : \mathscr{D} \to \mathscr{D}$ is an automorphism. Clearly, in this case, $(U_{\varphi^{-1}}f)(z) := J(\varphi, z)(f \circ \varphi)(z)$ is unitary on $\mathbb{A}^2(\mathscr{D})$ for all $\varphi \in \operatorname{Aut}(\mathscr{D})$.

The map $J:\operatorname{Aut}(\mathscr{D})\times \mathscr{D}\to \mathbb{C}$ satisfies the cocycle property, namely

 $J(\psi \varphi, z) = J(\varphi, \psi(z)) J(\psi, z), \, \varphi, \psi \in \operatorname{Aut}(\mathcal{D}), \, z \in \mathcal{D}.$

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.

Thus we have a unitary representation of the Lie group ${\rm Aut}(\mathscr{D})$ on $\mathbb{A}^2(\mathscr{D}).$

the proof that $\mathbb{I}_{\mathscr{D}}$ is an invariant

Let $\varphi: \mathscr{D} \to \mathscr{D}$ be a bi-holomorphic map. Applying the change of variable formula twice to the function $\log B_{\widehat{\mathscr{D}}}(\varphi(z), \varphi(w))$, we have

Hence we conclude that $\mathscr{K}_{B_{\mathscr{D}}}$ is quasi-invariant under a bi-holomorphic map φ , namely,

 $J\boldsymbol{\varphi}(w)^{\sharp}\mathscr{K}_{\widetilde{\mathscr{D}}}(\boldsymbol{\varphi}(w),\boldsymbol{\varphi}(w))\overline{J\boldsymbol{\varphi}(w)}=\mathscr{K}_{\mathscr{D}}(w,w),\,w\in\mathscr{D}.$

Also, the Bergman kernel $B_{\mathscr{D}}$ transforms according to the rule

 $\det J\varphi(w)B_{\widehat{\mathscr{D}}}(\varphi(w),\varphi(w))\det J\varphi(w)=B_{\mathscr{D}}(w,w).$ Combining these we obtain we obtain a biholomorphic invariant for the domain \mathscr{D} .

the proof that $\mathbb{I}_{\mathscr{D}}$ is an invariant

Let $\varphi: \mathscr{D} \to \widetilde{\mathscr{D}}$ be a bi-holomorphic map. Applying the change of variable formula twice to the function $\log B_{\widehat{\mathscr{D}}}(\varphi(z), \varphi(w))$, we have

Hence we conclude that $\mathscr{K}_{B_{\mathscr{D}}}$ is quasi-invariant under a bi-holomorphic map φ , namely,

 $J\boldsymbol{\varphi}(w)^{\sharp}\mathscr{K}_{\widetilde{\mathscr{D}}}(\boldsymbol{\varphi}(w),\boldsymbol{\varphi}(w))\overline{J\boldsymbol{\varphi}(w)}=\mathscr{K}_{\mathscr{D}}(w,w),\,w\in\mathscr{D}.$

Also, the Bergman kernel $\mathcal{B}_{\mathscr{D}}$ transforms according to the rule

 $\det J\boldsymbol{\varphi}(w)B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w),\boldsymbol{\varphi}(w))\overline{\det J\boldsymbol{\varphi}(w)}=B_{\mathscr{D}}(w,w).$

Combining these we obtain we obtain a biholomorphic invariant for the domain \mathcal{D} .

the proof that $\mathbb{I}_{\mathscr{D}}$ is an invariant

Let $\varphi: \mathscr{D} \to \widetilde{\mathscr{D}}$ be a bi-holomorphic map. Applying the change of variable formula twice to the function $\log B_{\widehat{\mathscr{D}}}(\varphi(z), \varphi(w))$, we have

Hence we conclude that $\mathscr{K}_{B_{\mathscr{D}}}$ is quasi-invariant under a bi-holomorphic map φ , namely,

 $J\boldsymbol{\varphi}(w)^{\sharp}\mathscr{K}_{\widetilde{\mathscr{D}}}(\boldsymbol{\varphi}(w),\boldsymbol{\varphi}(w))\overline{J\boldsymbol{\varphi}(w)}=\mathscr{K}_{\mathscr{D}}(w,w),\,w\in\mathscr{D}.$

Also, the Bergman kernel $\mathcal{B}_{\mathscr{D}}$ transforms according to the rule

 $\det J\boldsymbol{\varphi}(w)B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w),\boldsymbol{\varphi}(w))\overline{\det J\boldsymbol{\varphi}(w)} = B_{\mathscr{D}}(w,w).$

Combining these we obtain we obtain a biholomorphic invariant for the domain \mathcal{D} .

the proof cntd.

Taking determinants on both sides of the transformation rule for the curvature, we get $\det \mathscr{K}_{\mathscr{D}}(w,w) = |J\varphi(z)|^2 \det \mathscr{K}_{\widetilde{\varnothing}}(\varphi(w),\varphi(w)).$ Thus we get the invariance of $I_{\mathscr{D}}$: $\frac{\det \mathscr{K}_{\mathscr{D}}(w,w)}{B_{\mathscr{D}}(w,w)} = \frac{|J\varphi(z)|^2 \det \mathscr{K}_{\widetilde{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\mathscr{D}}(w,w)}$ $=\frac{|J\varphi(z)|^2 \det \mathscr{K}_{\tilde{\mathscr{D}}}(\varphi(w),\varphi(w))}{|J\varphi(w)|^2 B_{\tilde{\mathscr{D}}}(\varphi(w),\varphi(w))}$ $= \frac{\det \mathscr{K}_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w), \boldsymbol{\varphi}(w))}{B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w), \boldsymbol{\varphi}(w))}$

Theorem

For any homogeneous domain ${\mathscr D}$ in ${\mathbb C}^n,$ the function ${\mathbb I}_{{\mathscr D}}(z)$ is constant.

the proof cntd.

Taking determinants on both sides of the transformation rule for the curvature, we get $\det \mathscr{K}_{\mathscr{D}}(w,w) = |J\varphi(z)|^2 \det \mathscr{K}_{\widetilde{\varnothing}}(\varphi(w),\varphi(w)).$ Thus we get the invariance of $I_{\mathscr{D}}$: $\frac{\det \mathscr{K}_{\mathscr{D}}(w,w)}{B_{\mathscr{D}}(w,w)} = \frac{|J\varphi(z)|^2 \det \mathscr{K}_{\widetilde{\mathscr{D}}}(\varphi(w),\varphi(w))}{B_{\mathscr{D}}(w,w)}$ $=\frac{|J\varphi(z)|^2 \det \mathscr{K}_{\tilde{\mathscr{D}}}(\varphi(w),\varphi(w))}{|J\varphi(w)|^2 B_{\tilde{\mathscr{D}}}(\varphi(w),\varphi(w))}$ $= \frac{\det \mathscr{K}_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w), \boldsymbol{\varphi}(w))}{B_{\tilde{\mathscr{D}}}(\boldsymbol{\varphi}(w), \boldsymbol{\varphi}(w))}$

Theorem

For any homogeneous domain \mathscr{D} in \mathbb{C}^n , the function $\mathbb{I}_{\mathscr{D}}(z)$ is constant.

the euclidean ball and the polydisc are not biholomorphic

proof of the theorem

Since $\mathscr{D} \subseteq \mathbb{C}^n$ is homogeneous, it follows that there exists a bi-holomorphic map φ_u of \mathscr{D} for each $u \in \mathscr{D}$ such that $\varphi_u(0) = u$. Applying the transformation rule for I, we have

$$\begin{split} \mathbb{I}_{\mathscr{D}}(0) &= \frac{\det \mathscr{K}_{\mathscr{D}}(0,0)}{B_{\mathscr{D}}(0,0)} \\ &= \frac{\det \mathscr{K}_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))}{B_{\mathscr{D}}(\varphi_u(0),\varphi_u(0))} \\ &= \frac{\det \mathscr{K}_{\mathscr{D}}(u,u)}{B_{\mathscr{D}}(u,u)} = \mathbb{I}_{\mathscr{D}}(u), \, u \in \mathscr{D} \end{split}$$

It is easy to compute $I_{\mathscr{P}}(0)$ when \mathscr{D} is the bi-disc and the Euclidean ball in \mathbb{C}^2 . For these two domains, it has the value 4 and 9 respectively. We conclude that these domains therefore can't be bi-holomorphically equivalent!

proof of the theorem

Since $\mathscr{D} \subseteq \mathbb{C}^n$ is homogeneous, it follows that there exists a bi-holomorphic map φ_u of \mathscr{D} for each $u \in \mathscr{D}$ such that $\varphi_u(0) = u$. Applying the transformation rule for I, we have

$$\begin{split} \mathbb{I}_{\mathscr{D}}(0) &= \frac{\det \mathscr{K}_{\mathscr{D}}(0,0)}{B_{\mathscr{D}}(0,0)} \\ &= \frac{\det \mathscr{K}_{\mathscr{D}}(\boldsymbol{\varphi}_{u}(0),\boldsymbol{\varphi}_{u}(0))}{B_{\mathscr{D}}(\boldsymbol{\varphi}_{u}(0),\boldsymbol{\varphi}_{u}(0))} \\ &= \frac{\det \mathscr{K}_{\mathscr{D}}(u,u)}{B_{\mathscr{D}}(u,u)} = \mathbb{I}_{\mathscr{D}}(u), \, u \in \mathscr{D} \end{split}$$

It is easy to compute $I_{\mathscr{D}}(0)$ when \mathscr{D} is the bi-disc and the Euclidean ball in \mathbb{C}^2 . For these two domains, it has the value 4 and 9 respectively. We conclude that these domains therefore can't be bi-holomorphically equivalent!

new quasi-invariant kernels from old ones

new kernels?

1

Let K be a complex valued positive definite kernel on \mathcal{D} . For w in \mathcal{D} , and p in the set $\{1, ..., d\}$, let $e_p : \Omega \to \mathcal{H}$ be the antiholomorphic function:

$$e_p(w) := K_w(\cdot) \otimes \frac{\partial}{\partial \bar{w}_p} K_w(\cdot) - \frac{\partial}{\partial \bar{w}_p} K_w(\cdot) \otimes K_w(\cdot).$$

Setting
$$G(z,w)_{p,q} = \langle e_p(w), e_q(z) \rangle$$
, we have
 $\frac{1}{2}G(z,w)_{p,q}^{\sharp} = K(z,w) \frac{\partial^2}{\partial z_q \partial \bar{w}_p} K(z,w) - \frac{\partial}{\partial \bar{w}_p} K(z,w) \frac{\partial}{\partial z_q} K(z,w)).$

The curvature K of the metric K is given by the (1,1) form $\sum \frac{\partial^2}{\partial w_q \partial \bar{w}_p} \log K(w,w) dw_q \wedge d\bar{w}_p$. Set $\mathscr{K}_K(z,w) := \left(\!\!\left(\frac{\partial^2}{\partial z_q \partial \bar{w}_p} \log K(z,w)\right)\!\!\right)_{qp}$.

We note that $K(z,w)^2 \mathscr{K}(z,w) = \frac{1}{2}G(z,w)^{\sharp}$. Hence $K(z,w)^2 \mathscr{K}(z,w)$ defines a positive definite kernel on \mathscr{D} taking values in $\operatorname{Hom}(V,V)$.

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{D\boldsymbol{\varphi}(z)}^{-1} \\ &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w) \left(D\boldsymbol{\varphi}(w)^{\sharp^{-1}} \right)^* \\ &= m_0(\boldsymbol{\varphi},z)\mathscr{K}(z,w)m_0(\boldsymbol{\varphi},w)^*, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\varphi(z),\varphi(w))^2 \mathscr{K}(\varphi(z),\varphi(w)) = m_2(\varphi,z)K(z,w)^2 \mathscr{K}(z,w)m_2(\varphi,w)^*,$ where $m_2(\varphi,z) = \left(\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that

(i) $K^{2+\lambda}(z,w) \mathscr{K}(z,w)$, $\lambda > 0$, is a positive definite kernel and (ii) it transforms with the co-cycle $m_{\lambda}(\varphi,z) = (\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{\dagger})^{-1}$ in place of $m_2(\varphi,z)$.

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{D\boldsymbol{\varphi}(z)}^{-1} \\ &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\left(D\boldsymbol{\varphi}(w)^{\sharp^{-1}}\right)^* \\ &= m_0(\boldsymbol{\varphi},z)\mathscr{K}(z,w)m_0(\boldsymbol{\varphi},w)^*, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w))^{2}\mathcal{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) = m_{2}(\boldsymbol{\varphi},z)K(z,w)^{2}\mathcal{K}(z,w)m_{2}(\boldsymbol{\varphi},w)^{*},$

where $m_2(\varphi, z) = (\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp})^{-1}$ is a multiplier. Of course, we now have that

(i) $K^{2+\lambda}(z,w) \mathscr{K}(z,w), \lambda > 0$, is a positive definite kernel and (ii) it transforms with the co-cycle $m_{\lambda}(\varphi,z) = (\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{1})^{-1}$ in place of $m_{2}(\varphi,z)$.

rewrite the transformation rule

Or equivalently,

$$\begin{aligned} \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w)\overline{D\boldsymbol{\varphi}(z)}^{-1} \\ &= D\boldsymbol{\varphi}(z)^{\sharp^{-1}}\mathscr{K}(z,w) \left(D\boldsymbol{\varphi}(w)^{\sharp^{-1}} \right)^* \\ &= m_0(\boldsymbol{\varphi},z)\mathscr{K}(z,w)m_0(\boldsymbol{\varphi},w)^*, \end{aligned}$$

where $m_0(\varphi, z) = D\varphi(z)^{\sharp^{-1}}$ and multiplying both sides by K^2 , we have

 $K(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w))^2 \mathscr{K}(\boldsymbol{\varphi}(z),\boldsymbol{\varphi}(w)) = m_2(\boldsymbol{\varphi},z) K(z,w)^2 \mathscr{K}(z,w) m_2(\boldsymbol{\varphi},w)^*,$

where $m_2(\varphi, z) = \left(\det_{\mathbb{C}} D\varphi(w)^2 D\varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that

(i) $K^{2+\lambda}(z,w)\mathscr{K}(z,w)$, $\lambda > 0$, is a positive definite kernel and (ii) it transforms with the co-cycle

 $m_{\lambda}(\varphi, z) = \left(\det_{\mathbb{C}} D\varphi(z)^{2+\lambda} D\varphi(z)^{\dagger}\right)^{-1}$ in place of $m_2(\varphi, z)$.

Thank You!

