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Again, what we did not finish yesterday
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the euclidean ball and the polydisc are not biholomorphic

new quasi-invariant kernels from old ones
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Again, what we did not finish
yesterday



polarization

If γ is holomorphic and admits the power series
expansion γ(w) = ζ0 + ζ1w+ ζ2w2 + · · · , then the norm ∥γ(w)∥2

is a function of w and w̄. It has the form
∞

∑
j,k=0

⟨ζj ,ζk⟩wjw̄k, ζ0,ζ2, . . . ∈ H .

Polarizing ∥γ(w)∥2, we obtain a new function
γ̃(z,w) := ⟨γ(z),γ(w)⟩.
Thus ((

γ̃(zi,zj)
)) is non negative definite for all choices

of z1, . . .zn in D. This is just the positive-definiteness of
the kernel function K(z,w) = ⟨γ(z),γ(w)⟩!
The curvature K is a real analytic function and we
have shown that –K is positive.

Let K̃ (z,w) := – ∂ 2

∂ w̄∂z log γ̃(z,w) denote the function
obtained from polarization of the curvature K .
What about positive definiteness of –K̃ ?
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a secret

Refining the computation that established the positivity
of K , we obtain a stronger inequality. Set

φ(w) := K(·,w)⊗ ∂̄K(·,w) – ∂̄K(·,w)⊗K(·,w).
Note that φ(w) ∈ H , w ∈ D.
Moreover, a straightforward computation using the
reproducing property of K shows that

⟨φ(z),φ(w)⟩ = ∥ ∂
∂w

γ(w)∥2∥γ(w)∥2 – |⟨ ∂
∂w

γ(w),γ(w)⟩|2

= ∥φ(w)∥4 ∂ 2

∂ w̄∂w
log∥φ(w)∥–2

= –GK–2 (w),
where γ(w) = K(·,w), as before and GK–2 is the Gaussian
curvature of the metric K(w,w)–2 .
Thus the Gaussian curvature GK–2 is a non-negative
definite kernel.
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the final act – curvature
inequality for contractions



inequality for the Gaussian curvature

Proposition
Let T ∈B1(D) be a contraction. Assume that T is unitarily
equivalent to the operator M∗ on (H ,K) for some
non-negative definite kernel K on the unit disc. Then the
following inequality holds:

K2(z,w) ⪯ S–2
D (z,w)GK–1 (z,w),

that is, the matrix((
S–2
D (wi,wj)GK–1 (wi,wj) –K2(wi,wj)

))n
i,j=1

is non-negative definite for every subset {w1, . . . ,wn} of D
and n ∈ N.
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the Bergman kernel



example

For the Bergman space A2(Dm), of the polydisc Dm , the
orthonormal basis is {

√
∏m

k=1(ik +1)zI : I = (i1, . . . , im)}.
Clearly, we have

BDm(z,w) =
∞

∑
|I|=0

( m

∏
k=1

(ik +1)
)
zI w̄I =

m

∏
i=1

(1–ziw̄i)–2.

Similarly, for the Bergman space of the ball A2(Bm), the
orthonormal basis is {

√(–m–1
|I|

)(|I|
I

)
zI : I = (i1, . . . , im)}. Again,

it follows that
BBm(z,w) =

∞

∑
|I|=0

(
–m–1

ℓ

)(
∑

|I|=ℓ

(
|I|
I

)
zI w̄I

)
= (1– ⟨z,w⟩)–m–1.
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quasi-invariance of B

Any bi-holomorphic map φ : D → D̃ induces a unitary
operator Uφ : A2(D̃) → A2(D) defined by the formula

(Uφf)(z) = J(φ,z)
(
f ◦φ

)
(z), f ∈ A2(D̃), z ∈ D .

This is an immediate consequence of the change of
variable formula for the volume measure on Cn :∫

D̃
f dV =

∫
D

(f ◦φ) |JCφ|2dV .

Consequently, if {ẽn}n≥0 is any orthonormal basis for
A2(D̃), then {en}n≥0 , where ẽn = J(φ, ·)(ẽn ◦φ) is an
orthonormal basis for the Bergman space A2(D̃).
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transformation rule for the
kernel



quasi-invariance of B

Expressing the Bergman kernel BD of the domains D

as the infinite sum ∑∞
n=0 en(z)en(w) using the orthonormal

basis in A2(D) , we see that the Bergman Kernel B is
quasi-invariant, that is, If φ : D → D̃ is holomorphic then
we have the transformation rule

J(φ,z)BD̃ (φ(z),φ(w))J(φ,w) = BD (z,w),

where J(φ,w) is the Jacobian determinant of the map φ
at w .
If D admits a transitive group of bi-holomorphic
automorphisms, then this transformation rule gives an
effective way of computing the Bergman kernel. Thus

BD (z,z) = |J(φz ,z)|2BD (0,0), z ∈ D ,

where φz is the automorphism of D with the property
φz(z) = 0 .
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the invariant

The quasi-invariance of the Bergman kernel BD (z;w) also
leads to a bi-holomorphic invariant for the domain D .
Setting

KBD
(z) =

( ∂ 2

∂ zi∂ z̄j logBD

)
(z)

to be the curvature of the metric BD (z,z), the function

ID (z) := detKBD
(z)

BD (z,z) , z ∈ D

is a bi-holomorphic invariant for the domain D .
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the multiplier

Consider the special case, where φ : D → D is an
automorphism. Clearly, in this case,
(Uφ–1f)(z) := J(φ,z)(f ◦φ)(z) is unitary on A2(D) for all
φ ∈ Aut(D).
The map J : Aut(D)×D → C satisfies the cocycle
property, namely

J(ψφ,z) = J(φ,ψ(z))J(ψ,z), φ,ψ ∈ Aut(D), z ∈ D .

This makes the map φ → Uφ a homomorphism.
Thus we have a unitary representation of the Lie
group Aut(D) on A2(D).
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the proof that ID is an invariant

Let φ : D → D̃ be a bi-holomorphic map. Applying the
change of variable formula twice to the function
logBD̃ (φ(z),φ(w)), we have

(( ∂ 2

∂zi∂ w̄j
logBD̃ (φ(z),φ(w))

))
ij =

((∂φℓ

∂zi

))
iℓ

((
( ∂ 2

∂zℓ∂ w̄k
logBD )(z,w)

))
ℓk

((∂ φ̄k

∂ z̄j

))
kj .

Hence we conclude that KBD
is quasi-invariant under a

bi-holomorphic map φ , namely,
Jφ(w)♯KD̃ (φ(w),φ(w))Jφ(w) = KD (w,w), w ∈ D .

Also, the Bergman kernel BD transforms according to
the rule

detJφ(w)BD̃ (φ(w),φ(w))detJφ(w) = BD (w,w).
Combining these we obtain we obtain a biholomorphic
invariant for the domain D .

11



the proof that ID is an invariant

Let φ : D → D̃ be a bi-holomorphic map. Applying the
change of variable formula twice to the function
logBD̃ (φ(z),φ(w)), we have

(( ∂ 2

∂zi∂ w̄j
logBD̃ (φ(z),φ(w))

))
ij =

((∂φℓ

∂zi

))
iℓ

((
( ∂ 2

∂zℓ∂ w̄k
logBD )(z,w)

))
ℓk

((∂ φ̄k

∂ z̄j

))
kj .

Hence we conclude that KBD
is quasi-invariant under a

bi-holomorphic map φ , namely,
Jφ(w)♯KD̃ (φ(w),φ(w))Jφ(w) = KD (w,w), w ∈ D .

Also, the Bergman kernel BD transforms according to
the rule

detJφ(w)BD̃ (φ(w),φ(w))detJφ(w) = BD (w,w).
Combining these we obtain we obtain a biholomorphic
invariant for the domain D .

11



the proof that ID is an invariant

Let φ : D → D̃ be a bi-holomorphic map. Applying the
change of variable formula twice to the function
logBD̃ (φ(z),φ(w)), we have

(( ∂ 2

∂zi∂ w̄j
logBD̃ (φ(z),φ(w))

))
ij =

((∂φℓ

∂zi

))
iℓ

((
( ∂ 2

∂zℓ∂ w̄k
logBD )(z,w)

))
ℓk

((∂ φ̄k

∂ z̄j

))
kj .

Hence we conclude that KBD
is quasi-invariant under a

bi-holomorphic map φ , namely,
Jφ(w)♯KD̃ (φ(w),φ(w))Jφ(w) = KD (w,w), w ∈ D .

Also, the Bergman kernel BD transforms according to
the rule

detJφ(w)BD̃ (φ(w),φ(w))detJφ(w) = BD (w,w).
Combining these we obtain we obtain a biholomorphic
invariant for the domain D .

11



the proof cntd.

Taking determinants on both sidesof the
transformation rule for the curvature, we get

detKD (w,w) = |Jφ(z)|2 detKD̃ (φ(w),φ(w)).

Thus we get the invariance of ID :

detKD (w,w)
BD (w,w) =

|Jφ(z)|2 detKD̃ (φ(w),φ(w))
BD (w,w)

=
|Jφ(z)|2 detKD̃ (φ(w),φ(w))

|Jφ(w)|2BD̃ (φ(w),φ(w))

=
detKD̃ (φ(w),φ(w))
BD̃ (φ(w),φ(w))

Theorem
For any homogeneous domain D in Cn, the function ID (z)
is constant.
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the euclidean ball and the
polydisc are not biholomorphic



proof of the theorem

Since D ⊆ Cn is homogeneous, it follows that there
exists a bi-holomorphic map φu of D for each u ∈ D

such that φu(0) = u. Applying the transformation rule
for I, we have

ID (0) = detKD (0,0)
BD (0,0)

= detKD (φu(0),φu(0))
BD (φu(0),φu(0))

= detKD (u,u)
BD (u,u) = ID (u), u ∈ D

It is easy to compute ID (0) when D is the bi-disc and the
Euclidean ball in C2. For these two domains, it has the
value 4 and 9 respectively. We conclude that these
domains therefore can’t be bi-holomorphically
equivalent!
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new quasi-invariant kernels
from old ones



new kernels?

Let K be a complex valued positive definite kernel on D .
For w in D , and p in the set {1, . . . ,d}, let ep : Ω → H be

the antiholomorphic function:
ep(w) := Kw(·)⊗ ∂

∂ w̄p
Kw(·) – ∂

∂ w̄p
Kw(·)⊗Kw(·).

Setting G(z,w)p,q = ⟨ep(w),eq(z)⟩, we have
1
2G(z,w)p,q

♯ = K(z,w) ∂ 2

∂zq∂ w̄p
K(z,w) – ∂

∂ w̄p
K(z,w) ∂

∂zq
K(z,w)).

The curvature K of the metric K is given by the (1,1) -
form ∑ ∂ 2

∂wq∂w̄p
logK(w,w)dwq ∧dw̄p . Set
KK(z,w) :=

(( ∂ 2

∂zq∂ w̄p
logK(z,w)

))
qp.

We note that K(z,w)2K (z,w) = 1
2G(z,w)♯. Hence

K(z,w)2K (z,w) defines a positive definite kernel on D

taking values in Hom(V ,V ).
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rewrite the transformation rule

Or equivalently,
K (φ(z),φ(w)) = Dφ(z)♯–1

K (z,w)Dφ(z)–1

= Dφ(z)♯–1
K (z,w)

(
Dφ(w)♯–1)∗

= m0(φ,z)K (z,w)m0(φ,w)∗,

where m0(φ,z) = Dφ(z)♯–1 and multiplying both sides by K2,
we have
K(φ(z),φ(w))2K (φ(z),φ(w)) = m2(φ,z)K(z,w)2K (z,w)m2(φ,w)∗,

where m2(φ,z) =
(

detCDφ(w)2Dφ(z)♯
)–1 is a multiplier. Of

course, we now have that
(i) K2+λ (z,w)K (z,w) , λ > 0, is a positive definite kernel and

(ii) it transforms with the co-cycle
mλ (φ,z) =

(
detCDφ(z)2+λDφ(z)†)–1 in place of m2(φ,z).
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Thank You!
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